

De 05 a 10 de agosto de 2007 Serrano Centro de Convenções - Gramado-F

Efeito do manejo do solo nas propriedades físicas e no desenvolvimento inicial de *Eucalyptus grandis*

<u>Juliana Prevedello</u>⁽¹⁾, Dalvan José Reinert⁽²⁾, José Miguel Reichert⁽²⁾, Fabiano de Vargas Arigony Braga⁽³⁾, Paulo Ivonir Gubiani⁽⁴⁾, Adão Leonel Mello Corcini⁽⁴⁾

RESUMO - O manejo do solo em florestas visa aumentar a produtividade e a conservação do solo, quanto às suas propriedades físicas, químicas e biológicas. Diante disso, avaliou-se as alterações dos atributos indicadores da qualidade física de um Argissolo Vermelho Amarelo distrófico arênico, sob diferentes sistemas de manejo e o crescimento inicial de eucalipto. Para tanto, foram coletados amostras de solo nas camadas de 0-0,10; 0,10-0,20; 0,20-0,30 e 0,30-0,40 m na região de Santa Maria, RS. Os atributos físicos avaliados foram: densidade, porosidade, macroporosidade, microporosidade, porosidade total e resistência do solo à penetração, além de verificar alguns parâmetros do crescimento inicial do Eucalyptus grandis. Os sistemas de manejo estudados foram: plantio direto (PD), escarificação (Esc), escarificação mais gradagem niveladora (EG) e gradagem rotativa (Grot). Os parâmetros físicos avaliados foram eficientes em detectar o efeito dos diferentes manejos na alteração da estrutura do solo e crescimento das plantas. A camada superficial apresentou os menores valores de densidade do solo, associada ao acúmulo de matéria orgânica e atividade de raízes, e os maiores valores foram encontrados na camada de 0,30-0,40 m, possivelmente pela menor ação dos implementos utilizados no preparo do solo nessa camada. O solo não atingiu níveis críticos de resistência à penetração das raízes (2 MPa). Os tratamentos que receberam revolvimento do solo foram os que apresentaram maiores incrementos em altura e diâmetro do eucalipto, demonstrando a importância do manejo do solo para o melhor desenvolvimento inicial da cultura.

Introdução

A técnica de cultivo mínimo e plantio direto em plantações florestais têm sido amplamente utilizados como forma de aumentar a produtividade, aliado à manutenção da biodiversidade e a conservação do solo, quanto às suas propriedades físicas, químicas e biológicas. Segundo Soane & Ouwerkerk [1], o manejo do solo pode provocar compactação nos atributos físicos, tais como aumento da densidade e da resistência à penetração, e a redução da porosidade e permeabilidade, sendo importante o monitoramento dessas características ao longo do tempo de uso do solo.

A resistência mecânica do solo à penetração é uma das propriedades físicas relacionadas diretamente

com o crescimento das plantas. Vários estudos têm buscado determinar a relação entre a resistência à penetração e a densidade do solo [2; 3; 4]. De acordo com Borges *et al.* [4] altas densidades diminuem os espaços vazios, aumentando a resistência mecânica dos solos e, em conseqüência, prejudicam o desenvolvimento do sistema radicular das plantas devido ao impedimento físico. Além disso, Beltrame et al. [3] observaram que a diminuição da umidade do solo provoca aumento na resistência à penetração, pois o teor de água modifica a coesão entre as partículas do solo.

Misra & Gibbons [5] verificaram que as raízes de eucalipto parecem ser mais tolerantes a valores elevados de resistência mecânica à penetração em comparação com plantas anuais. Segundo Tormena et al. [6] o crescimento radicular é impedido a partir de valores de 2,0 MPa, já Rosolem et al [7] verificaram que valores críticos de resistência à penetração variam de 1,5 a 4,0 MPa, apresentando restrição ao crescimento radicular. Contudo, Whitman et al. [8] concluíram que mudas de *Eucalyptus grandis* apresentaram desenvolvimento satisfatório quando os valores de resistência mecânica à penetração foram de até 1,0 MPa, enquanto que para valores superiores esse foi prejudicado.

A porosidade é outro atributo importante que deve ser considerado na avaliação da qualidade estrutural do solo. Segundo Baver et al. [9], valores de macroporosidade menores que 0,10 a 0,16 m³ m⁻³ são críticos para o desenvolvimento das plantas. Para Tormena et al. [6], valores de macroporosidade ideais para as plantas estão na faixa entre 0,09 a 0,12 m³ m⁻³, podendo sua redução causar um decréscimo da permeabilidade do solo.

Palavras-chave: preparo do solo, atributos físicos, crescimento de eucalipto.

Material e métodos

O experimento foi instalado no Centro de Pesquisas de Recursos Florestais (CPRFSM) – Fepagro-Florestas, localizada no município de Santa Maria, Rio Grande do Sul. O clima da região é o Cfa, subtropical úmido, segundo a classificação de Köppen. As médias anuais de temperatura e precipitação são 19°C e 1.769 mm, respectivamente [10].

O solo da área é um Argissolo Vermelho Amarelo distrófico arênico textura média com substrato arenítico e

argila de baixa atividade, pertencente à unidade de mapeamento São Pedro [11].

O delineamento experimental utilizado foi em blocos ao acaso, com quatro tratamentos e três repetições, distribuídos em parcelas de 30 x 20 m, com 100 mudas por parcela. Os tratamentos que caracterizaram os sistemas de manejo do solo na linha, para implantação do eucalipto, foram: (a) plantio direto (PD); (b) escarificação com 1 haste (Esc); (c) escarificação com 1 haste mais grade niveladora com 1,0 m de largura (EG); (d) gradagem rotativa com 1,0 m de largura (Grot). As manutenções foram constituídas de roçadas e contínuo combate à formiga.

O experimento foi instalado em novembro de 2006, onde aplicou-se os tratamentos na área e subseqüentemente o plantio das mudas. O início das medições ocorreu dois meses após a instalação do experimento, sendo repetidas mensalmente. Foi avaliada a altura total, medida com trena do solo até o ponto da gema apical, e o diâmetro do colo e a 10 cm de altura, medidos com auxílio de paquímetro digital.

As amostras de solo com estrutura preservada foram coletadas em fevereiro de 2007, na linha de plantio, utilizando cilindros de aço inoxidável com 0,06 m de diâmetro e 0,05 m de altura. As amostras foram retiradas nas camadas de 0-0,10 m, 0,10-0,20 m, 0,20-0,30 m e 0,30-0,40 m e determinadas a densidade, porosidade total, macroporosidade e microporosidade do solo, conforme metodologia descrita em [12].

A resistência do solo à penetração (RP) foi determinada com o auxílio de um penetrômetro digital (modelo Remik CP 20 Ultrasonic Cone Penetrometer) de armazenamento eletrônico dos dados, e leituras realizadas a cada 0,015 m de profundidade, possuindo ponta cônica com ângulo de penetração 30°. A RP foi determinada até a profundidade de 0,60 m e a cada 0,20 m de distância perpendicular à linha de plantio, até 0,60 m. Para obtenção da umidade gravimétrica, concomitante às medidas de RP, foram coletadas amostras de solo nas camadas 0-0,10; 0,10-0,20; 0,20-0,30; 0,30-0,40; 0,40-0,50 e 0,50-0,60 m.

Os resultados obtidos foram submetidos à análise estatística, utilizando-se o teste de Tukey (P < 0.05) para a comparação entre médias.

Resultados e discussões

Para as propriedades físicas em estudo (densidade, porosidade total, macro e microporosidade) não houve interação entre os tratamentos avaliados e as profundidades. O coeficiente de variação para a densidade do solo foi de 7,6%, para a porosidade total foi de 11,4% e para a macro e microporosidade foram, respectivamente, 33,4 e 4,3%. A densidade do solo no plantio direto é maior e estatisticamente diferente em relação aos demais tratamentos (Tabela 1), podendo estar associado ao não revolvimento do solo nesse tratamento. A camada entre 0-0,10 m apresentou menor densidade do solo, diferindo das demais profundidades,

situação semelhante foi encontrada por Cavalieri et al. [13] estudando a relação de sistema mínimo de preparo do solo para a cultura de mandioca. A menor densidade do solo na camada superficial pode ter relação ao maior conteúdo de matéria orgânica e ação de raízes, tanto do eucalipto quanto de espécies espontâneas na entrelinha do eucalipto. Porém, os maiores valores de densidade do solo foram encontrados na camada entre 0,30-0,40 m, podendo estar associado ao não revolvimento ou não alteração da estrutura do solo nessa camada.

A porosidade total na camada superficial (0-0,10 m) foi maior e diferiu das demais camadas (Tabela 1), concordando com os valores de densidade, os quais foram menores nessa camada.

Assim como a porosidade total, a macroporosidade foi maior na camada superficial (0-0,10 m) do solo (Tabela 1). De modo geral os valores de macroporosidade são superiores a 10 a 15 %, considerado mínimo para o pleno desenvolvimento das plantas [14], com exceção da camada de 0,30-0,40 m dos tratamentos EG e Grot.

A maior porosidade total e macroporosidade na camada de 0-0,10 m, e menores na camada de 0,30-0,40 m estão relacionadas à menor e maior densidade, respectivamente. A semelhança de valores de porosidade total e macroporosidade entre os diferentes tratamentos pode estar relacionada ao fato de que os tratamentos que modificam a estrutura do solo pelo revolvimento apresentam maior alteração na forma do poro, e não tanto na quantidade de poros, quando comparado ao manejo sem revolvimento.

A microporosidade não diferiu entre as camadas de solo (Tabela 1), mostrando que a alteração em profundidade, em termos de densidade do solo, refletiu apenas na porosidade total e macroporosidade, não influenciando a microporosidade. Na comparação entre os tratamentos, o manejo Grot apresentou menor microporosidade e diferiu dos demais. Possivelmente o revolvimento provocou um adensamento das partículas do solo, reduzindo a microporosidade.

Nenhum tratamento avaliado apresentou resistência do solo à penetração superior a 2 MPa, valor considerado crítico para o crescimento das plantas [15] (Figura 1). Esse fato pode estar associado à textura arenosa e a umidade do solo no momento da avaliação. O plantio direto (PD) apresentou os maiores valores de resistência à penetração, associado ao não revolvimento do solo. Nos tratamentos que receberam escarificação (Esc e EG) ficou evidente o efeito da haste do escarificador na redução da resistência à penetração, até a profundidade de, aproximadamente, 0,40m. No tratamento com gradagem rotativa (Grot), a da resistência à penetração aproximadamente, 0,15m. A umidade do solo apresentou baixa variação (0,14 a 0,17 kg kg⁻¹), com valores próximos à capacidade de campo, tanto em profundidade quanto entre os tratamentos.

A resistência do solo à penetração aumenta em função de sua densidade, mostrando boa correlação com esta variável (Tabela 3) na linha e a 0,20 m de distância da linha de plantio, na camada de 0-0,40 m.

De modo geral, o aumento do diâmetro do eucalipto foi mais expressivo com a Grot, praticamente não diferindo dos tratamentos com escarificação, enquanto que para a altura, o efeito mais significativo foi a menor altura do eucalipto no plantio direto. Resultados semelhantes foram obtidos por Cavichiolo et al. [16], mostrando que a gradagem na produtividade da rebrota de Eucalyptus saligna produziu maior incremento em DAP, evidenciando a ocorrência de incorporação de serrapilheira na superfície do solo, aumentando o teor de nutrientes disponíveis às plantas. Portanto, as diferenças para os tratamentos que receberam preparo do solo em relação ao plantio direto, demonstram a correlação com a resistência do solo à penetração, medida na linha de plantio, para a camada de 0-0,40 m.

Esses resultados revelam a importância do revolvimento do solo em favorecer o melhor desenvolvimento da cultura, na sua fase inicial. Contudo, o efeito do revolvimento a longo prazo, afetando os parâmetro físicos do solo e de crescimento da planta devem ser observados.

Conclusões

Os parâmetros físicos avaliados foram eficientes em detectar o efeito dos diferentes manejos na alteração da estrutura do solo e parâmetros de crescimento das plantas.

A camada superficial apresentou os menores valores de densidade do solo, associada ao acúmulo de matéria orgânica e atividade de raízes, e os maiores valores foram encontrados na camada de 0,30-0,40 m, possivelmente pela menor ação dos implementos utilizados no preparo do solo nessa camada.

O solo não atingiu níveis críticos de resistência à penetração das raízes (2 MPa).

Os tratamentos que receberam revolvimento do solo foram os que apresentaram maiores incrementos em altura e diâmetro do eucalipto, demonstrando a importância do manejo do solo para o melhor desenvolvimento inicial da cultura.

O tratamento com grade rotativa favoreceu o melhor desenvolvimento da cultura, possivelmente por promover a incorporação de nutrientes ao solo, através do revolvimento das camadas superficiais e mais rápida disponibilidade desses nutrientes para a fase inicial do eucalipto.

A resistência mecânica do solo à penetração apresentou boa correlação com o incremento em altura, diâmetro do colo e a 10 cm de altura das plantas medida na linha de plantio e a 0,40 m e a 0,60 m de distância da linha de plantio, respectivamente, na camada de 0-0,40 m.

Referências

 SOANE, B.D.; OUWERKERK, C. van. Soil compaction problems in world agriculture. In: SOANE B.D.;

- OUWERKERK, C. van, ed. Soil compaction in crop production. Netherlands: Elsevier, 1994. p.01-21.
- [2] TORMENA, C.A., ROLOFF, G. Dinâmica da resistência á penetração de um solo sob plantio direto. Revista Brasileira de Ciência do Solo, v.20, p.333-9, 1996.
- [3] BELTRAME, L. F. S.; GONDIM, L. A. P.; TAYLOR, J. C. Estrutura e compactação na permeabilidade de solos do Rio Grande do Sul. Revista Brasileira de Ciência do Solo. Campinas, v.5, p.145-149, 1981.
- [4] BORGES, A. L.; KIEHL, J.; SOUZA, L. S. Alteração de propriedades físicas e atividade microbiana de um Latossolo Amarelo álico após cultivo com fruteiras perenes e mandioca. Revista Brasileira de Ciência do Solo, Campinas, v.23, p.1019-1025, 1999.
- [5] MISRA, R.K; GIBBONS, A. K. Growth and morphology of eucalypt seedling-roots, in relation to soil strength from compaction. Plant and soil, v. 182, n. 1, p. 1-11, 1996.
- [6] TORMENA, C.A., SILVA, A.P. da & LIBARDI, P.L. Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto. Revista Brasileira de Ciência do Solo, Viçosa, 22, 573-581, 1998.
- [7] ROSOLEM, C.A.; FERNANDEZ, E.M.; ANDREOTTI, M.; CRUSCIOL, C.A.C. Crescimento radicular de plântulas de milho afetado pela resistência do solo à penetração. Pesquisa Agropecuária Brasileira, Brasília, v.34, p.821-828, 1999.
- [8] WHITMAN, A. A.; BROKAW, V. L.; HAGAN, J. M. Forest damage caused by logging of mahogany (Swietenia macrophylla) in northern Belize. Forest Ecology and Management, Amsterdan, v.92, n. 1-3, p. 87-96, 1997.
- [9] BAVER, L. D.; GARDNER, W. H.; GARDNER, W. R. Soil physics. 4. ed. New York: John Wiley, 1972. 529 p.
- [10] MORENO, J. A. Clima do Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura, 1961. 42p.
- [11] STRECK, E. V., KÄMPF, N., DALMOLIN, R. S. D., KLAMT, E., NASCIMENTO, P. C., SCHNEIDER, P. Solos do Rio Grande do Sul. Porto Alegre: EMATER / RS, UFRGS, 2002. 107p.
- [12] EMBRAPA. Centro Nacional de Pesquisas de Solos. Rio de Janeiro, RJ. Manual de métodos de análise de solo. 2 ed. ver. Atual. Rio de Janeiro, 1997. 212 p.
- [13] CAVALIERI, K.M.V.; TORMENA, C.A.; FILHO, P.S.V.; GONÇALVES, A.C.A.; COSTA, A.C.S. Efeito de sistemas de preparo nas propriedades físicas de um latossolo vermelho distrófico. Revista Brasileira de Ciência do Solo, Viçosa, v.30, p.137-147, 2006.
- [14] VOMOCIL, J.A; FLOCKER, W.J. Effect of soil compaction on storage and movement of soil, air and water. Transactions of the American Society of Agricultural Engineers, v.4, p.242-246, 1966.
- [15] TAYLOR, H.M., ROBERSON, G.M. & PARKER JUNIOR, J.J. Soil strength-root penetration relations for medium to coarsetextured soil materials. Soil Science, 102: 18-22, 1966.
- [16] CAVICHIOLO, S.R.; DEDECEK, R.A.; GAVA, J.L. Avaliação do efeito do sistema de preparo de solos de diferentes texturas, na sua resistência mecânica e na produtividade da rebrota de *Eucalyptus* saligna. Boletim de Pesquisa Florestal, Colombo, PR, v.47, p.83-98, 2003.

Tabela 1. Densidade do solo, porosidade total, macroporosidade e microporosidade determinados para cada sistema de manejo em quatro profundidades.

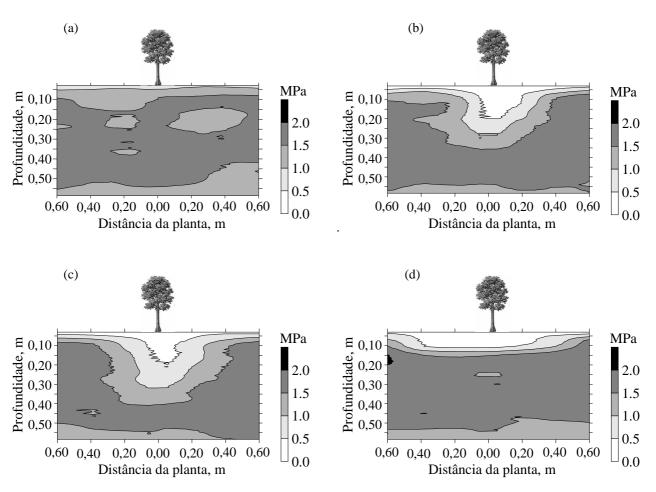
Profundidade					
(m)	PD	Esc	EG	Grot	Média
, ,		Densidade do s	olo (Mg m ⁻³)		
0,00-0,10	1,50	1,29	1,26	1,12	1,29 b
0,10-0,20	1,58	1,37	1,32	1,53	1,45 a
0,20-0,30	1,57	1,24	1,35	1,52	1,42 a
0,30-0,40	1,58	1,38	1,46	1,56	1,49 a
Média	1,56 A	1,32 B	1,35 B	1,43 AB	
		Porosidade To	otal (m³ m⁻³)		
0,00-0,10	0,44	0,48	0,38	0,50	0,45 a
0,10-0,20	0,39	0,38	0,37	0,39	0,38 b
0,20-0,30	0,39	0,40	0,37	0,41	0,39 b
0,30-0,40	0,38	0,42	0,33	0,33	0,36 b
Média	0,40 A	0,42 A	0,36 A	0,41 A	
		Macroporosida	ade (m³ m⁻³)		
0,00-0,10	0,17	0,23	0,11	0,30	0,20 a
0,10-0,20	0,15	0,14	0,13	0,17	0,14 ab
0,20-0,30	0,14	0,17	0,12	0,18	0,15 ab
0,30-0,40	0,12	0,17	0,07	0,09	0,11 b
Média	0,14 A	0,17 A	0,10 A	0,18 A	
		Microporosida	nde (m³ m⁻³)		
0,00-0,10	0,27	0,26	0,27	0,20	0,25 a
0,10-0,20	0,24	0,25	0,25	0,23	0,24 a
0,20-0,30	0,25	0,24	0,25	0,23	0,24 a
0,30-0,40	0,26	0,25	0,26	0,23	0,25 a
Média	0,30 A	0,25 AB	0,30 A	0,22 B	

Médias seguidas de letras iguais, minúscula na coluna e maiúscula na linha, não diferem estatisticamente entre si pelo Teste de Tukey a 5% de probabilidade. PD= Plantio Direto; Esc=Escarificado; EG= Escarificado mais Grade niveladora; Grot= Grade rotativa.

Tabela 2. Valores médios de umidade gravimétrica do solo (kg kg⁻¹) no momento da avaliação da resistência à penetração para os tratamentos e profundidades em estudo.

Tratamento —	Profundidade (m)						
	0-0,10	0,10-0,20	0,20-0,30	0,30-0,40	0,40-0,50	0,50-0,60	
PD	0,16	0,17	0,16	0,17	0,17	0,16	
Esc	0,14	0,13	0,15	0,14	0,15	0,14	
EG	0,15	0,16	0,15	0,16	0,15	0,15	
Grot	0,14	0,16	0,16	0,15	0,15	0,16	

Tabela 3. Correlações entre a resistência do solo à penetração e atributos físicos do solo e parâmetros de crescimento de *Eucalyptus grandis*, para os quatro tratamentos.


DL (m)	Ds	Macro	Micro	PT	dcolo	d10	h
0	0,76 *	0,25 ns	-0,30 ^{ns}	0,19 ns	-0,23 ^{ns}	-0,32 ns	-0,53*
0,20	0,63 *	0.18^{ns}	-0,30 ^{ns}	$0,12^{\text{ns}}$	$-0.37^{\text{ ns}}$	-0,46 ^{ns}	$-0.49^{\text{ ns}}$
0,40	$0.05^{\rm ns}$	$0.05^{\rm ns}$	$0.18^{\text{ ns}}$	$0,12^{\text{ ns}}$	-0,54 *	-0,50 ^{ns}	-0.25^{ns}
0,60	$0.04^{\rm ns}$	$0,12^{\text{ ns}}$	-0,37 ^{ns}	$0.02^{\rm ns}$	0,64 *	0,63 *	$0,43^{\text{ ns}}$

^{*} significativo a 5% de probabilidade; ns = não significativo. DL = distância da linha; Ds = densidade do solo; Macro = macroporosidade; Micro = microporosidade; PT = porosidade total; dcolo = diâmetro do colo; d10 = diâmetro a 10 cm de altura; h = altura.

Tabela 4. Avaliação da altura e o diâmetro do colo e diâmetro a 10 cm de altura nos quatro tratamentos.

Tratamento	1° mês	2° mês	3° mês
		Altura (m)	
PD	0,26 b	0,48 b	0,79 b
Esc	0,35 a	0,77 a	1,05 a
EG	0,34 a	0,77 a	1,02 ab
Grot	0,34 a	0,74 a	1,05 a
média	0,32	0,69	0,98
CV (%)	6,03	9,44	8,34
		diâmetro do colo (cm)	
PD	3,47 b	7,74 b	14,75 a
Esc	4,18 ab	10,18 ab	16,70 a
EG	4,43 a	10,65 ab	16,61 a
Grot	5,06 a	11,13 a	18,56 a
média	4,28	9,92	16,66
CV (%)	7,34	10,89	8,99
	d	liâmetro 10 cm de altura (cm)	
PD	2,14 b	5,69 b	11,46 a
Esc	3,11 a	7,88 ab	13,30 a
EG	3,18 a	8,33 a	13,50 a
Grot	3,41 a	8,57 a	14,55 a
média	2,96	7,62	13,20
CV (%)	8,09	11,46	10,62

Médias seguidas de letras iguais, na coluna, não diferem estatisticamente entre si pelo Teste de Tukey a 5% de probabilidade.

Figura 1. Resistência do solo à penetração para os quatro tratamentos, avaliados em diferentes distâncias na linha de plantio e em seis profundidades. (a) plantio direto; (b) Escarificação com 1 haste; (c) Escarificação com 1 haste mais gradagem niveladora; (d) grade rotativa.