# IMPACTO DO TRÁFEGO DE MÁQUINAS E DA ESCARIFICAÇÃO NAS PROPRIEDADES FÍSICAS DO SOLO EM PLANTIO DIRETO DE FEIJOEIRO

Douglas Rodrigo Kaiser<sup>1</sup>; Gilberto Loguercio Collares <sup>2</sup>; Dalvan José Reinert <sup>3</sup>; José Miguel Reichert <sup>3</sup>, Giovana Rossato Santi <sup>4</sup>, Marcelo Kunz <sup>4</sup>.

## Introdução

A compactação dos solos agrícolas tem aumentado nos últimos anos e vem se tornando um fator limitante ao aumento da produtividade e a sustentabilidade do sistema plantio direto (Silva, 2003), especialmente em solos argilosos. Nesse trabalho buscou-se determinar, em solo argiloso, a relação entre o tráfego de máquinas em plantio direto e o preparo do solo sobre as propriedades físicas do solo.

### Material e Métodos

O experimento foi instalado num Latossolo Vermelho, com 607g kg<sup>-1</sup> de argila, 176 g kg<sup>-1</sup> de silte e 217 g kg<sup>-1</sup> de areia nos primeiros 0,48m localizado no município de Cruz Alta-RS. A área utilizada para o experimento vinha sendo cultivada há vários anos no sistema Plantio direto. O delineamento experimental foi de blocos ao acaso com três repetições, e os tratamentos foram níveis de compactação: **T1**-Plantio Direto + Compactação adicional; **T2**- Plantio Direto e **T3**- escarificação. No T1, a compactação adicional das parcelas foi obtido por quatro passadas paralelas e sobrepostas de uma Pá-Carregadeira com massa de 16,6 Mg.

Para a determinação da densidade e porosidade do solo foram coletadas amostras com estrutura preservada em anéis metálicos com 5,36 cm de diâmetro e 3 cm de altura, em cinco profundidades. A resistência do solo à penetração foi determinada até os 60 cm de profundidade, usando-se um penetrômetro de taxa constante de penetração, com armazenamento eletrônico dos dados e leituras realizadas a cada 0,15 cm de profundidade,

\_

<sup>&</sup>lt;sup>1</sup> Acadêmico de Agronomia, UFSM, Bolsista do Laboratório de Física de Solos, PIBIC. email: kaiser@mail.ufsm.br

<sup>&</sup>lt;sup>2</sup> Engenheiro Agrícola, M.S., Professor Departamento de Ciências Agrárias, CAVG/UFPEL. Doutorando em Ciência do Solo, UFSM.

<sup>&</sup>lt;sup>3</sup> Engenheiro Agrônomo, PhD, Professor Titular, Departamento de Solos, CCR, UFSM.

<sup>&</sup>lt;sup>4</sup> Acadêmico de Agronomia, Bolsista do Laboratório de Física de Solos, UFSM.

possuindo ponta cônica com ângulo de penetração de 30°. Simultaneamente á determinação da resistência a penetração foi medida a umidade do solo, utilizando TDR. Os sensores do TDR, com hastes de 23 cm de comprimento, foram inseridos no solo, nas profundidades de 0 a 6; 6 a 12; 12 a 24 e 24 a 48 cm.

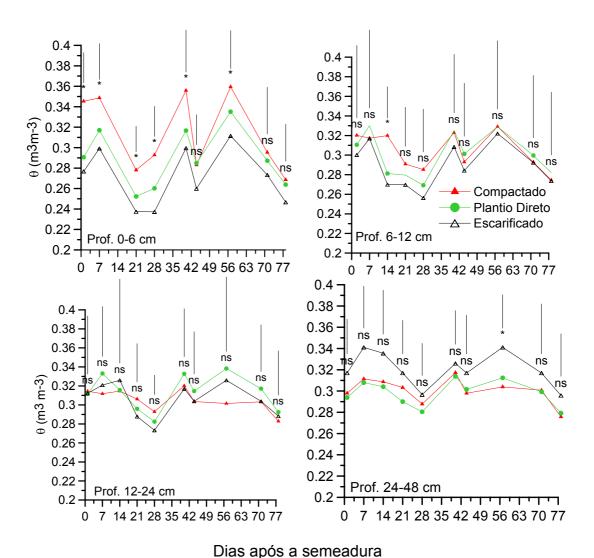
A cultura utilizada na área foi o feijoeiro (*Phaseolus vulgaris* L. cv. FT Bionobre). A densidade de semeadura foi de 250 mil plantas ha, com espaçamento entre linhas de 0,45 m.

### Resultados e discussão

A densidade do solo foi superior no Plantio Direto com compactação adicional, mas não diferiu estatisticamente dos demais tratamentos.

**Tabela 3** - Densidade, porosidade do solo submetido a diferentes níveis de tráfego e cultivado com a cultura do feijoeiro.

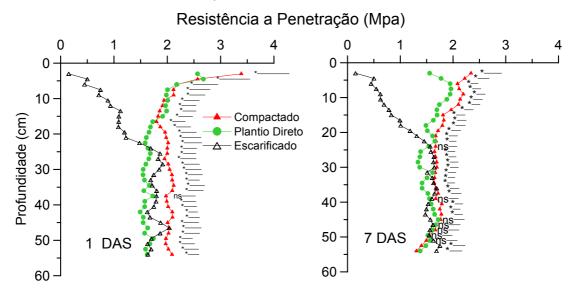
| Tratamento   | Profundidade (cm)                                 |       |         |        |       |
|--------------|---------------------------------------------------|-------|---------|--------|-------|
| <del>-</del> | 0-5                                               | 5-10  | 10-15   | 20-25  | 30-35 |
|              | Densidade (Mg m <sup>-3</sup> )                   |       |         |        |       |
| 1            | 1,30a                                             | 1,51a | 1,51a   | 1,39a  | 1,28a |
| 2            | 1,24a                                             | 1,41a | 1,42a   | 1,31a  | 1,31a |
| 3            | 1,28a                                             | 1,40a | 1,48a   | 1,36a  | 1,32a |
|              | Porosidade Total (m³m⁻³)                          |       |         |        |       |
| 1            | 0,56a                                             | 0,51a | 0,52a ` | 0,55a  | 0,56a |
| 2            | 0,59a                                             | 0,54a | 0,51a   | 0,56a  | 0,55a |
| 3            | 0,58a                                             | 0,49a | 0,54a   | 0,54a  | 0,57a |
|              | Microporosidade (m <sup>3</sup> m <sup>-3</sup> ) |       |         |        |       |
| 1            | 0,39a                                             | 0,43a | 0,44a ` | 0,46a  | 0,44a |
| 2            | 0,36a                                             | 0,41a | 0,41b   | 0,42b  | 0,42a |
| 3            | 0,39a                                             | 0,33a | 0,42ab  | 0,43ab | 0,43a |
|              | Macroporosidade (m³m³)                            |       |         |        |       |
| 1            | 0,17a                                             | 0,07a | 0,08a ` | 0,09a  | 0,12a |
| 2            | 0,23a                                             | 0,12a | 0,10a   | 0,13a  | 0,12a |
| 3            | 0,19a                                             | 0,16a | 0,11a   | 0,11a  | 0,13a |


Médias seguidas de mesma letra na coluna não diferem entre si pelo teste DMS a 5%.

Com relação à porosidade observa-se uma tendência de aumento na microporosidade e redução na macroporosidade no Plantio Direto com a compactação adicional. A escarificação aumentou a quantidade de macroporos até os 25 cm de profundidade, o que representa uma maior aeração do solo.

A umidade volumétrica do solo ao longo do ciclo da cultura (Figura 1), teve uma ampla faixa de variação, principalmente nas camadas superficiais.

O Plantio direto com compactação adicional apresentou os maiores valores


de umidade nas camadas superficiais, principalmente por apresentar uma maior quantidade de microporos. A escarificação proporcionou menores valores de umidade nessas camadas, devido a maior macroporosidade. Nas camadas mais profundas as diferenças foram menores e a escarificação teve maiores teores de umidade.



**Figura 1** –Variação da umidade volumétrica em diferentes profundidades do solo ao longo do ciclo da cultura do feijoeiro. Barras verticais comparam valores de  $\theta$  pelo teste DMS a 5%.

Essa flutuação no teor de água fez com que a resistência à penetração oferecida pelo solo atingisse valores acima de 2 MPa nos períodos mais secos, que é considerada crítica para as plantas

(Taylor,1966). Os maiores valores de resistência ocorreram próximo aos 10 cm de profundidade nos tratamento que recebeu compactação adicional e no Plantio Direto (Figura 2). Na escarificação a resistência à penetração foi menor até os 25 cm, o que pode proporcionar melhores condições para o crescimento das raízes das plantas.



**Figura 2**.—Resistência a Penetração em diferente períodos do ciclo da cultura Barras horizontais comparam os valores de RP, para cada profundidade, pelo teste DMS (5%).

### Conclusão

A compactação aumentou a densidade do solo e a resistência à penetração nas camadas superficiais, reduzindo a macroporosidade e aumentando a microporosidade, o que manteve a umidade maior na superfície. O Plantio Direto apresenta um alto estado de compactação na área avaliada e a escarificação mostrou-se eficiente em diminuir os efeitos negativos proporcionados pela compactação, até os 25 cm de profundidade. A escarificação aumentou a macroporosidade, permitido melhor aeração e proporcionou menor resistência à penetração ao logo do ciclo da cultura.

# Referências Bibliográficas

TAYLOR, H.M. ,ROBERSON, G.M., PARKER, Jr J.J. Soil Strength – root penetration relations for médium- to coarse- textured soil materials. **Soil Science**. V 102, p 18-22, 1966.

SILVA, V.R da. Propriedades Físicas e Hídricas em Solos sob Diferentes Estados de Compactação. 2003. 171f. Tese (Doutorado)-Universidade Federal de Santa Maria. Programa de Pós-Graduação em Agronomia, Santa Maria, 2003.