Distribuição de Poros e Condutividade Hidráulica Saturada em Argissolo Submetido a Diferentes Manejos e Níveis de Compactação

<u>Miriam Fernanda Rodrigues</u> ⁽¹⁾; Douglas Rodrigo Kaiser ⁽²⁾; Jackson Adriano Albuquerque ⁽³⁾; Dalvan José Reinert ⁽⁴⁾; Maurício Kunz ⁽⁵⁾; & José Miguel Reichert ⁽⁴⁾

(1) Acadêmica do Curso de Engenharia Florestal, bolsista CNPq, Universidade Federal de Santa Maria (UFSM), miriamf rodrigues@yahoo.com.br (apresentadora do trabalho); (2) Doutorando do curso de Pós-Graduação em Ciência do Solo (PPGCS) da UFSM, Bolsista CAPES. douglasrodrigokaiser@gmail.com; (3) Professor do Depto de Solos e Recursos Naturais da UDESC, jackson@cav.udesc.br. (4) Professor do Depto de Solos da UFSM, Pesquisador do CNPq, dalvanreinert@gmail.com, reichert@smail.ufsm.br. (5) Mestrando do curso de Pós-Graduação em Ciência do Solo (PPGCS) da UFSM, Bolsista CAPES.

RESUMO: O manejo e a compactação alteram a estrutura do solo e, assim, o movimento da água e gases no solo. Neste trabalho, avaliou-se o efeito de sistemas de manejo e de níveis de compactação sobre a porosidade, densidade e a condutividade hidráulica do solo saturado. O delineamento experimental foi em blocos ao acaso com quatro repetições. Os tratamentos foram: plantio direto (PD); plantio direto com tráfego adicional (PDc); escarificação (Esc); subsolagem (Sub); e preparo convencional (PC). O PDc apresentou maior densidade (Ds) e menor porosidade total (Pt) e macroporos (Mac) até 0,40 m de profundidade. A Esc, Sub e o PC reduziram a Ds e aumentaram a Pt. A Ksat teve correlação positiva com Pt e Mac e negativa com Ds. Para uma porosidade mínima de aeração de 0,10 m³ m⁻³, a Ksat foi de 10,6 mm h⁻¹ sendo necessário que a Ds esteja abaixo de 1,67 Mg m⁻³ e a Pt acima de 0,36 m³m⁻³. No PDc a Ds, Pt e Mac encontram-se fora dos valores de referência considerados adequados para as culturas.

Palavras - chave: Densidade do solo, macroporos, plantio direto.

INTRODUÇÃO

A disponibilidade de água para as plantas é dependente da distribuição da precipitação no tempo e da capacidade do solo reter e disponibilizar água. Anualmente, grandes extensões de terras sob matas e campo nativo são incorporadas ao sistema de produção agrícola, enquanto que outras áreas são abandonadas,

devido aos elevados níveis de degradação, resultantes do manejo inadequado. Em ambientes agrícolas, a entrada de água no solo é fundamental para que a mesma atinja camadas mais profundas, permitindo a recarga do lençol freático e o armazenamento na zona explorada pelas raízes.

A retenção e a condução de água no solo são favorecidas por um sistema poroso, estável e bem distribuído no perfil. Os poros maiores são responsáveis pela aeração do solo e pela condução de água em condições saturadas, enquanto que os poros menores atuam na retenção e condução de água em condições não saturadas. Segundo Ribeiro et al. (2007), a redução da proporção de poros maiores pode restringir o fluxo saturado de água no solo.

O manejo do solo e o tráfego de máquinas agrícolas alteram as características do sistema poroso e a condutividade hidráulica. Quando o solo é revolvido, sua estrutura é alterada, e um novo sistema poroso é formado, normalmente, com poros desconectados e em grande quantidade. O solo mantido sob semeadura direta apresenta o sistema poroso estável e contínuo, devido à maior atividade biológica e a ciclagem de raízes. No entanto, quando solos sob semeadura direta são trafegados, a pressão exercida pelos pneus das máquinas é transmitida ao solo, resultando numa compactação adicional. O impacto do tráfego sob o sistema poroso, e a profundidade atingida vão depender da pressão exercida e da umidade do solo. Neste trabalho, avaliou-se o efeito de manejos e níveis de compactação sobre a densidade, porosidade e condutividade hidráulica do solo saturado.

MATERIAL E MÉTODOS

O estudo foi realizado na área experimental do Departamento de Solos da UFSM, em Santa Maria-RS. O clima da região, segundo a classificação de Köepen, é subtropical úmido, tipo "Cfa". O solo do local é classificado como Argissolo Vermelho-Amarelo Distrófico arênico (Embrapa, 1999) (Typic Hapludalf), cuja análise granulométrica indicou valores médios de 106 g kg⁻¹ de argila, 240 g kg⁻¹ de silte e 654 g kg⁻¹ de areia (classe textural franco arenosa) até a profundidade de 0,3 m.

A área utilizada para o experimento vinha sendo cultivada no sistema de semeadura direta desde o ano de 2004. Antes de ser incorporada ao sistema produtivo, essa área foi mantida em pousio por 15 anos, predominado na área, gramíneas nativas. O experimento consistiu de sistemas de manejos e níveis de compactação com os tratamentos: plantio direto (PD); plantio direto com tráfego adicional por 2 passadas sobrepostas de uma pá carregadeira de 8 toneladas (PDc); Escarificação até 0,15 m de profundidade (Esc), Subsolagem até 0,35 m de profundidade (Sub); e Preparo convencional com lavração até 0,35 m de profundidade e gradagem superficial (PC). O delineamento experimental foi em blocos ao acaso com 4 repetições.

Para avaliar a densidade, a porosidade e a condutividade hidráulica saturada, coletaram-se amostras com estrutura preservada, no início (11/2007) e no final (02/2008) do ciclo do milho, em cilindros metálicos com 0,057 m de diâmetro e 0,04 m de altura, nas camadas de 0,0 a 0,05; 0,05 a 0,10; 0,10 a 0,20; 0,20 a 0,30; 0,30 a 0,40; 0,40 a 0,50 e 0,50 a 0,60 m, na primeira avaliação. Na segunda avaliação, as duas últimas camadas não foram amostradas, por ficarem fora da zona de efeito dos tratamentos.

No laboratório as amostras foram saturadas pesadas e submetidas às tensões de 1, 6 e 10 kPa na mesa de tensão (Oliveira, 1968) e 33 e 100 kPa em Câmara de Richards, para calcular a distribuição de poros pela equação fundamental da capilaridade. Após, as amostras foram novamente saturadas e determinou-se a condutividade hidráulica do solo saturado (Ksat) em permeâmetro de carga variável, sendo a amostra submersa na água. No final, as amostras foram

secas em estufa a 105° C até peso constante para determinar a densidade do solo (Ds).

Os dados foram submetidos ao teste de Shapiro-Wilk para verificar a distribuição de normalidade. A Ksat teve que passar por transformação logarítmica para seguir a distribuição normal. Também se fez uma análise correlação de Pearson entre Ksat com os demais atributos avaliados, estabelecendo regressões entre esses parâmetros. Procedeu-se a análise de variância e comparação de médias utilizando-se o teste de Tukey a 5 % de probabilidade (SAS, 2002).

RESULTADOS E DISCUSSÃO

O tráfego adicional (PDc) sobre o solo no plantio direto alterou significativamente a Ds nas camadas superficiais (0 a 0,10 m) (Tabela 1). O PC e o Sub reduziram a Ds até 0,30 m de profundidade, enquanto o efeito da Esc foi apenas na superfície (0,10 m). Na segunda época (final do ciclo do milho), é possível observar que os tratamentos que foram revolvidos (Sub, Esc e PC) tiveram densidades semelhantes ao PD, indicando um processo de reconsolidação do solo no tempo.

A Pt foi reduzida pela compactação (PDc) apenas na superfície (0,05 m). A lavração do solo (PC) aumentou a Pt até os 0,30 m Já a Esc e Sub não alteraram a Pt do solo (Tabela 2). O maior efeito do PC ocorreu sobre a quantidade de macroporos ate os 0,20 m. A compactação adicional (PDc) e a Esc e Sub não tiveram efeito significativo sobre a Mac, em relação ao PD. O efeito do manejo e da compactação praticamente desapareceu na segunda época avaliada. Apenas o PC apresenta uma quantidade de macroporos significativamente maior na superfície (0,05 m), e nas demais camadas e manejos o comportamento é semelhante. (Tabela 2).

A Ksat teve uma grande variação entre tratamentos e entre camadas, o que pode ser comprovado pelo alto coeficiente de variação (CV). De maneira geral, observa-se que o PC teve maior Ksat até os 0,20m, onde também se observou maior quantidade de macroporos (Tabela 2). Nos demais tratamentos e camadas, o comportamento foi semelhante estatisticamente, sendo o mesmo comportamento observado para a segunda época.

A Ds, a Pt e a Mac foram os parâmetros que melhoram se correlacionam com a Ksat do solo (Tabela 3), indicando que qualquer efeito de manejo sobre esses parâmetros, vai refletir na Ksat do solo. A

porcentagem de microporos e das demais classes de poros não teve correlação significativa com a Ksat, e foram pouco afetadas pelo manejo.

A Ksat é uma propriedade dinâmica do solo e o seu comportamento será determinado pelo grau de compactação que o solo apresenta e pela continuidade quantidade e poros, principalmente macroporos. À medida que aumenta a Ds, devido á compactação do solo, diminui a porosidade total e o volume de macroporos (Figura 1b). O volume de 0,10 m³ m⁻³ de macroporos vem sendo utilizado como padrão na literatura (Tormena et al, 1998; Collares et al, 2006), por ser considerado suficiente para uma boa aeração do solo. Esse volume de macroporos no solo em estudo representaria uma Ksat de apenas 10,6 mm h⁻¹. Para uma Ksat de 10,6 mm h⁻¹ ¹, a Pt do solo mínima deve ser de 0,36 m³ m⁻³ e a Ds máxima que o solo pode apresentar é de 1,67 Mg m^{-3} . Tomando esses valores (Ksat = 10,6 mm h^{-1} , Ds = 1,67 Mg m^{-3} , Pt = 0,36 m^3 m^{-3} e macro = 0.10 m³m⁻³), verifica-se que as maiores limitações ocorrem no tratamento com a compactação adicional do solo (PDc), pois são verificados maiores valores de Ds e menores valores de Pt, Mac e Ksat, principalmente nas camadas de 0,05 a 0,40 m, onde normalmente situa-se a camada compactada dos solos sob plantio direto (Collares et al. 2006). A grande dispersão dos pontos e o baixo coeficiente de determinação apresentado na figura 1 a, indica que além do volume de poros a sua continuidade no perfil é fundamental para a drenagem e distribuição de água no solo.

CONCLUSÕES

A condutividade hidráulica saturada apresentou correlação positiva com porosidade total e macroporosidade e negativa com a densidade do solo;

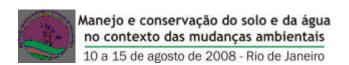
Para uma macroporosidade mínima de 0,10 m³ m⁻³, a densidade critica é de 1,67 Mg m⁻³ e a porosidade total crítica é de 0,36 m³ m⁻³;

O PDc tem a maior densidade e menor porosidade total, macroporosidade e condutividade hidráulica saturada,es Ds e menor Pt , Mac e Ksat, considerados limitantes em relação aos valores de referência estabelecidos;

REFERÊNCIAS

COLLARES, G.L.; REINERT, D.J.; REICHERT, J.M.; KAISER, D.R. Qualidade física do solo na produtividade do feijoeiro num Argissolo. Pesq. Agrop. Bras.41:1663-1674, 2006.

OLIVEIRA, L.B. Determinação da macro e microporosidade pela mesa de tensão em amostras de solo com estrutura indeformada. Pesq. Agrop. Bras. 3:197-200, 1968.


RIBEIRO, K.D.; MENEZES, S.M.; MESQUITA, M.G.B. & SAMPAIO, F.M.T. Propriedades físicas do solo, influenciadas pela distribuição de poros, de seis classes de solos da região de Lavras-MG. Ciência e Agrotecnologia .31. 2007.

SAS INSTITUTE. Getting started with the SAS learning edition. Cary: SAS, 2002. 200p.

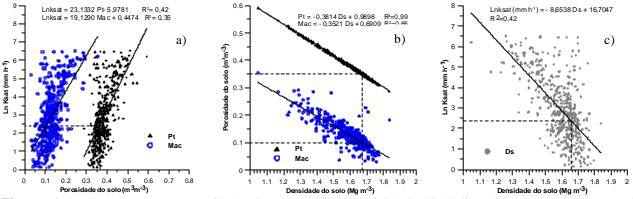
TORMENA, C.A.; SILVA, A.P.; LIBARDI, P.L. Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto. Rev. Bras. Ci. Solo. 22:573-581, 1998.

Tabela 1. Densidade do solo em diferentes manejos e níveis de compactação do solo.

Camada	Tratamentos												
(m)	PDc		PD		Esc		Sub		PC		CV (%)		
Épocas da coleta													
	1	2	1	2	1	2	1	2	1	2	1	2	
Densidade do solo (Mg m ⁻³)													
0.0 - 0.05	1,57a	1,59a	1,41bc	1,4b	1,41bc	1,42 b	1,46ab	1,45 b	1,31 c	1,36 b	6,2	5,8	
0.05 - 0.10	1,70a	1,66a	1,64 a	1,64b	1,63ab	1,60ab	1,51bc	1,55 b	1,48 c	1,57ab	5,4	4,3	
0,10-0,20	1,69a	1,70a	1,61 a	1,62ab	1,66 a	1,61ab	1,61 a	1,60ab	1,43 b	1,57 b	4,2	4,7	
0,20-0,30	1,68a	1,66a	1,63ab	1,62 a	1,63ab	1,63 a	1,52 c	1,57 a	1,59bc	1,59 a	3,5	3,9	
0,30 - 0,40	1,71a	1,63b	1,69 a	1,61 b	1,66 a	1,71 a	1,64 a	1,60 b	1,62 a	1,68ab	4,1	3,5	
0,40 - 0,50	1,64a	-	1,58 a	-	1,57 a	-	1,55 a	-	1,61 a	-	3,4	_	
0.50 - 0.60	1.62a	_	1.58ab	-	1.56ab	_	1.51 b	-	1.60ab	-	4.5	_	

* Médias seguidas de mesma letra na linha, entre épocas iguais, não diferem pelo teste de Tukey a 5% de probabilidade

Tabela 2. Porosidade total, macroporosidade e condutividade hidráulica saturada do solo em diferentes manejos e níveis de compactação do solo.


Camada					Tratar	nentos							
(m)	PDc		PD		Esc		Sub		PC		CV (%)		
	Épocas da coleta												
	1	2	1	2	1	2	1	2	1	2	1	2	
Porosidade total (m ³ m ⁻³)													
0,0 -0,05	0,39 b	0,38b	0,45 a	0,43a	0,45 a	0,47a	0,45a	0,44a	0,48a	0,47a	7,5	7,4	
0,05 - 0,10	0,33 c	0,36a	0,36 c	0,37a	0,37bc	0,39a	0,42ab	0,40a	0,43a	0,39a	9,2	8,2	
0,10 - 0,20	0,34 b	0,35a	0,37 b	0,37a	0,35 b	0,38a	0,37b	0,38a	0,44a	0,39a	7,5	8,9	
0,20-0,30	0,35 b	0,36a	0,37 b	0,37a	0,37 b	0,38a	0,41a	0,38a	0,39ab	0,39a	6,0	7,1	
0,30-0,40	0,33 a	0,37a	0,35 a	0,37a	0,35 a	0,34a	0,37a	0,38a	0,37a	0,35a	7,1	6,9	
0,40-0,50	0,36 a	-	0,39a	-	0,39 a	-	0,39 a	-	0,37a	-	6,0	_	
0,50-0,60	0,37 a	-	0,39 a	-	0,39 a	-	0,42a	-	0,38a	-	7,9	_	
Macroporosidade (m³m⁻³)													
0,0 -0,05	0,11b	0,09b	0,17b	0,14ab	0,17b	0,19a	0,16b	0,18ab	0,25a	0,22 a	24,5	39,2	
0,05-0,10	0,07c	0,09a	0,12bc	0,10 a	0,13ab	0,12 a	0,15ab	0,14 a	0,17a	0,12a	28,4	27,9	
0,10-0,20	0,10b	0,09a	0,14ab	0,11 a	0,11b	0,12a	0,11b	0,13a	0,20a	0,13 a	22,1	25,2	
0,20-0,30	0,10b	0,11 a	0,14a	0,12 a	0,14ab	0,12a	0,17a	0,14 a	0,14ab	0,13 a	23,0	23,2	
0,30-0,40	0,11a	0,10 a	0,10a	0,12 a	0,11a	0,08 a	0,11 a	0,12 a	0,13a	0,08 a	30,9	25,6	
0,40-0,50	0,12 ab	-	0,16ab	-	0,15a	-	0,15ab	-	0,11b	-	21,6	-	
0,50-0,60	0,14 ab	-	0,16b	-	0,17a	-	0,16ab	-	0,13b	-	18,1	_	
			Cond	lutividade	hidráulica	a do solo s	aturado (r	nm h ⁻¹)					
0,0 -0,05	89,9b	18,3b	242,0a	106,0a	141,8a	162,5a	208,1a	82,7ab	293,6a	162,2a	78,7	81,9	
0,05-0,10	31,65a	28 ,0a	47,8a	32,6a	153,2a	47,7a	142,1a	98,0a	98,3a	55,8a	158,6	108,	
0,10-0,20	49,3b	12,4a	55,34b	26,0a	10,6b	141,4a	13,8b	66,9a	37,4a	75,4a	140,8	178,	
0,20-0,30	6,1a	1,76a	22,2a	101,0a	9,9a	40,0a	52,0a	27,7a	46,3a	46,0a	218,7	215,	
0,30-0,40	6,13a	11,1a	61,0a	93,6a	5,8a	31,3a	44,9a	40,9a	12,9a	16,5a	323,1	264,	
0,40-0,50	7,53a	-	8,8a	-	6,24a	-	10,7 a	-	14,2a	-	93,0	81,9	
0,50-0,60	5,29b	-	8,9ab	-	12,7ab	-	35,0 a	-	6,1ab	-	218,1	108,	

^{*} Médias seguidas de mesma letra na linha, entre épocas iguais, não diferem pelo teste de Tukey a 5% de probabilidade

Tabela 3. Coeficientes de correlação de Pearson entre a condutividade hidráulica saturada do solo com a densidade e classes de poros do solo.

Parâmetro	Ds	Pt	Mac	Mic	Diâmetro de poros (um)						
					> 297	297 -50	50 - 30	30-10	10 - 3	<3	
Ksat	-0,55**	0,54**	0,53**	-0,07 ^{ns}	0,05 ns	0,11*	-0,03 ^{ns}	-0,02 ns	-0,04 ^{ns}	-0,05 ^{ns}	

^{*} significativo a 5%; ** significativo a 1% e ns = não significativo.

Figura 1. Relações entre a porosidade do solo e a condutividade hidráulica do solo saturado (a); da porosidade com a densidade do solo (b) e da condutividade hidráulica com a densidade do solo (c).