RELAÇÃO DAS CARACTERÍSTICAS FÍSICAS DO SOLO COM DISTRIBUIÇÃO RADICULAR E PRODUTIVIDADE DO FEIJOEIRO

STÜRMER, S.L.K 1 , PELLEGRINI, A 3 , REICHERT, J.M 2 , REINERT, D.J. 2 , KUNZ, M. 1 , KUNZ, M. 1 , KAISER. D.R. 1

Universidade Federal de Santa Maria (UFSM); Centro de Ciências Rurais (CCR); Departamento de Solos (DS); Fone: (055) 220 8108; E-mail: agrosidi@mail.ufsm.br

Introdução

Na agricultura, a água é essencial ao desenvolvimento das plantas e regula os demais fatores físicos e químicos do solo que influenciam diretamente o crescimento e a produtividade das culturas (Letey, 1985). Além das condições climáticas e tipo de solo, o manejo dado ao solo é muito importante no aumento ou redução da disponibilidade hídrica para as plantas. O plantio direto, por exemplo, é eficiente em reduzir as perdas de água do solo por evaporação; no entanto, o não revolvimento do solo e o intenso tráfego de máquinas produzem camadas compactadas em sub-superfície (8-12 cm), aumentando a proporção de poros de pequeno diâmetro que retêm água a tensões superiores à capacidade de extração pelas plantas.

Os diferentes sistemas de preparo do solo afetam a produtividade das culturas de uma maneira complexa, envolvendo diferentes alterações na sua estrutura, modificando relações de porosidade, resistência mecânica à penetração, conteúdo de água, entre outras propriedades. A compactação leva ao aumento da densidade do solo, aumento da resistência à penetração radicular, redução da infiltração e da aeração, e alteração do fluxo de água e calor e da disponibilidade de água e nutrientes. A diminuição do teor de água aumenta a resistência do solo, fazendo com que as raízes em expansão experimentem um impedimento mecânico cada vez maior. Estudos afirmam que o estabelecimento, desenvolvimento e rendimento das culturas são influenciados pelas características físico-hídricas dos solos.

O objetivo deste trabalho foi estudar a influência dos diferentes sistemas de manejo nas características físico-hídricas do solo e sua relação com desenvolvimento radicular e produtividade da cultura do feijoeiro.

Material e Métodos

O experimento foi conduzido na área experimental do Departamento de Solos, da Universidade Federal de Santa Maria, na região fisiográfica da Depressão Central do RS. O clima da região enquadra-se na classificação "Cfa" de Köppen.

Os tratamentos foram: PDc - plantio direto compactado, PD - plantio direto, Esc - escarificado e PC - preparo convencional, distribuídos em quatro blocos com parcelas de 6 x 7 metros. Na aplicação dos tratamentos, a área encontrava-se em pousio, sendo anteriormente cultivada com feijão em safrinha e aveia preta (*Avena estrigosa* Schieb) no inverno. O preparo convencional caracterizou-se por uma aração e uma gradagem. A escarificação foi realizada com duas passadas a uma profundidade máxima de 40 cm com um escarificador de três hastes espaçadas de 40 cm e, logo após, foi efetuada uma gradagem. A umidade volumétrica do solo no momento da escarificação foi de 0,14; 0,17; 0,20 e 0,23 cm³ cm⁻³, nas profundidades de 0-10, 10-20, 20-30 e 30-40 cm, respectivamente.

¹ Aluno de Agronomia. Bolsista do Laboratório de Física do Solo. UFSM.

² Engenheiro Agrônomo, PhD, Professor Titular, Departamento de Solos, UFSM.

³ Engenheiro Agrônomo, Aluno do PPGCS, UFSM.

A semeadura do feijão (*Phaseolus vulgaris* L.; cv. FT Bio Nobre, tipo II) foi feita no dia 12/02/2004, dentro do período recomendado para safrinha, com espaçamento entre linhas de 0,45 metro totalizando aproximadamente 230 mil plantas ha⁻¹. A adubação de base foi de 300 kg ha⁻¹ da fórmula 5-20-30. A aplicação de nitrogênio em cobertura foi de 200 kg ha⁻¹ de uréia. Realizou-se a aplicação de herbicidas, fungicidas e inseticidas de acordo com as necessidades da cultura.

Os parâmetros físicos do solo avaliados foram a densidade, a macroporosidade, a microporosidade e a porosidade total, sendo coletadas amostras com estrutura preservada em anéis metálicos em quatro profundidades (0-60 mm, 60-120 mm, 120-240 mm e 240-480 mm), enquanto a resistência do solo à penetração (RP) foi determinada com um penetrômetro digital manual até 500 mm de profundidade. Simultaneamente, determinou-se a umidade volumétrica do solo.

Na plena floração do feijoeiro, fez-se a avaliação do desenvolvimento e distribuição do sistema radicular nos diferentes tratamentos, usando o método do perfil cultural descrito por Böhm (1979).

Resultados e Discussão

Para a densidade do solo (Tabela 1), os maiores valores encontrados foram no PDc na camada de 6-24cm, enquanto que no PD foram de 6-12cm. Os tratamentos com revolvimento do solo apresentaram, de modo geral, maior porosidade total e macroporosidade em relação aos demais.

Tabela 1 - Densidade, porosidade total, macroporosidade e microporosidade do solo na cultura do feijoeiro sob diferentes sistemas de manejo do solo.

	22 DAS					67 DAS*			
Trat.	0-6cm	6-12cm	12-24cm	24-48cm	0-6cm	6-12cm	12-24cm	24-48cm	
	Densidade do solo (Mg m ⁻³)					Densidade do solo (Mg m ⁻³)			
PDc	1,71 a	1,83 a	1,83 a	1,69 a	1,62 a	1,80 a	1,83 a	1,74 a	
PD	1,60 a	1,73 a	1,69 b	1,63 a	1,62 a	1,73 a	1,68 b	1,55 c	
Esc	1,53 a	1,36 b	1,65 b	1,68 a	1,42 b	1,48 b	1,57 b	1,65 b	
PC	1,53 a	1,70 ab	1,67 b	1,70 a	1,46 b	1,67 a	1,67 b	1,69 ab	
	Porosidade Total (%)					Porosidade Total (%)			
PDc	36,21 a	31,69 b	31,79 b	36,32 a	39,40 b	32,92 b	31,63 b	34,88 c	
PD	40,17 a	35,55 b	36,94 a	39,31 a	39,46 b	35,45 b	37,48 a	42,00 a	
Esc	42,60 a	41,75 a	38,54 a	37,21 a	46,97 a	44,90 a	41,23 a	38,28 b	
PC	42,66 a	36,58ab	37,51 a	37,05 a	45,38 a	37,75 b	37,62 a	36,84 bc	
Macroporosidade (%)					Macroporosidade (%)				
PDc	8,49b	7,29 b	7,43 a	9,07 a	9,52 b	7,48 b	7,22 b	8,36 c	
PD	9,694b	8,05 b	8,71 a	9,36 a	9,48 b	7,87 b	8,35 ab	9,96 a	
Esc	14,05 a	11,39 a	9,25 a	9,03 a	15,55 a	12,51 a	10,22 a	9,30 ab	
PC	11,79ab	7,41 b	9,24 a	8,62 a	13,20 a	10,41 a	9,35 a	8,43 bc	
	Microporosidade (%)					Microporosidade (%)			
PDc	27,72 a	24,40 b	24,37 b	27,97 a	29,88 a	25,44 b	24,41 b	26,52 b	
PD	30,53 a	27,49ab	28,23 a	29,95 a	30,00 a	27,58 b	29,11 a	32,03 a	
Esc	28,54 a	30,36 a	29,29 a	28,18 a	31,41 a	32,38 a	31,01 a	28,98 b	
PC	30,86 a	27,17ab	28,27 a	27,70 a	32,18 a	27,34 b	28,27 a	28,41 b	

^{*} DAS – Dias após semeadura. Médias seguidas de mesma letra na coluna não diferem entre si pelo teste Tukey a 5% de significância.

A alteração na porosidade, causada pelos tratamentos, influenciou diretamente o conteúdo e disponibilidade de água. Para o PDc a variação foi menor devido à maior

microporosidade, a qual reteve mais água em épocas secas, mas armazenando menos em dias de alta umidade. Para o PC, observa-se o oposto. Observando o comportamento da umidade volumétrica do solo ao longo do ciclo do feijoeiro, verificou-se que a cultura foi submetida a uma ampla faixa de variação e essa foi maior na camada superficial, a qual também apresentou menor conteúdo de água.

Quanto à resistência do solo à penetração (Figura 1), em condições de alta umidade, os sistemas Esc e PC apresentaram comportamentos semelhantes. Diferenças nos tratamentos começaram a se estabelecer a partir de 12 cm de profundidade até aproximadamente os 30 cm. Aos 20 cm, no PDc a RP chegou a 2,5 MPa, ultrapassando o valor de 2,0 MPa que é considerado limitante para a maioria das culturas (Taylor et al., 1966); contudo, no PD, não ultrapassou esse valor.

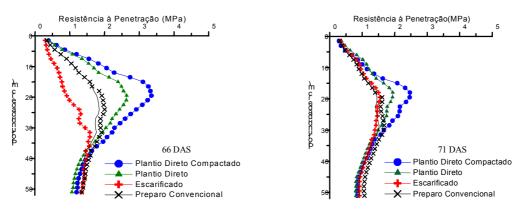
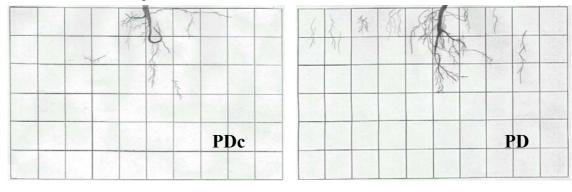
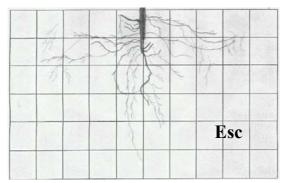




Figura 1. Resistência do solo à penetração com diferentes teores de umidade, em duas datas distintas

Em condições de baixa umidade do solo, a RP foi menor nos sistemas Esc e PC, o que pode ser atribuído à maior mobilização do solo nesses sistemas de manejo. O sistema PDc apresentou valores maiores do que 2,0 MPa, dos 10 aos 35 cm de profundidade, enquanto que o PD somente dos 15 aos 35 cm. A partir dos 35 cm de profundidade, nenhum dos tratamentos mostrou diferença significativa nas duas datas com umidade distinta (Pellegrini et al., 2004). A variação da RP deu-se de acordo com a densidade e flutuação da umidade do solo, que tiveram amplitudes diferentes para cada sistema. Taylor & Brar (1991) encontraram resultados de mesma natureza e afirmam que, durante o ciclo de uma cultura, as raízes podem experimentar períodos de menor e maior resistência do solo devido à flutuação da umidade do solo.

Comparando o desenvolvimento radicular com a densidade do solo, observa-se que valores próximos a 1,80 Mg m⁻³ podem criar camadas compactadas de impedimento ao desenvolvimento radicular, conforme observado nos sistemas PDc e PD. Nesses não foram encontradas raízes a mais de 15 cm de profundidade (Figura 2). Crescimento radicular abundante, ramificado e profundo foi encontrado nos sistemas com revolvimento do solo.

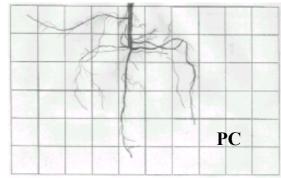


Figura 2. Distribuição radicular da cultura do feijoeiro nos diferentes tratamentos em perfil cultural (50X30) e quadrículas de 5X5cm.

As menores produtividades nos tratamentos PDc e PC (Tabela 2) podem ter sido influência da menor disponibilidade de água, pela maior retenção e o rápido secamento do solo, respectivamente. A diferença entre os sistemas de manejo do solo foi significativa para algumas datas de avaliação, indicando variação temporal no armazenamento e disponibilidade de água diferenciada para cada manejo de solo.

Tabela 2 – Produtividade do feijoeiro sob diferentes sistemas de manejo do solo.

	, <u> </u>
Tratamentos	Produtividade de grãos
	kg ha ⁻¹
Esc	2056,1 a*
PD	1907,8 ab
PDc	1856,7 ab
PC	1484,4 b

^{*}Médias seguidas de mesma letra não diferem entre si pelo teste Tuckey a 5% de significância.

REFERÊNCIAS BIBLIOGRÁFICAS

- LETEY, J. Relationship between soil physical properties and crop producions. **Advances in Soil Science**, v. 1, p. 277-294, 1985.
- LIBARDI, P.L. MANFRON, P.A., MORAES, S.O. &TUON, R.L. Variabilidade da umidade gravimétrica de um solo hidromórfico. **Revista Brasileira de Ciência do Solo**, v.20, p.1-12, 1996.
- BÖHM, W. **Methods of studying root systems.** Berlin: Sprinnger-Verlag Berlin Heidelberg, 1979. 190p.
- TAYLOR, H.M., ROBERSON, G.M., PARKER Jr, J.J. Soil strength-root penetration relations for medium- to coarse-textured soil materials. **Soil Science**, v.102, p.18-22, 1966
- TAYLOR, H.S. & BRAR, G.S. Effect of soil compaction on root development. Soil & Tillage Research, v.19, p.111-119, 1991.
- PELLEGRINI, A., REICHERT, M., REINERT, D., STURMER, S. L. K., KUNZ, M., KUNZ, M., KAISER, D. R.. Variabilidade temporal na umidade do solo sob diferentes sistemas de manejo na cultura do feijoeiro. In: **CD e Anais do XVRBMCSA.** Santa Maria, RS, 2004.